Q. The value of $k$ for which the function $f(x) = \begin{cases} \left( \frac{4}{5} \right)^{\frac{\tan \ 4x}{\tan \ 5x}} &, 0 < x < \frac{\pi}{2}\\ k + \frac{2}{5} &, x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, is :
Solution: