Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is

KEAMKEAM 2007Integrals

Solution:

Let $ I=\int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $
$=\int{\frac{1+\frac{1}{{{x}^{2}}}}{{{x}^{2}}+\frac{1}{{{x}^{2}}}-1}}dx $
$=\int{\frac{\left( 1+\frac{1}{{{x}^{2}}} \right)}{{{\left( x-\frac{1}{x} \right)}^{2}}+1}}dx $ Let $ x-\frac{1}{x}=t $ and $ \left( 1+\frac{1}{{{x}^{2}}} \right)dx=dt $
$ \therefore $ $ I=\int{\frac{dt}{{{t}^{2}}+1}}={{\tan }^{-1}}t+c $
$={{\tan }^{-1}}\left( x-\frac{1}{x} \right)+c $
$={{\tan }^{-1}}\left( \frac{{{x}^{2}}-1}{x} \right)+c $