The given integral is
$\int \frac{x^{2}-1}{x^{3} \sqrt{2 x^{4}-2 x^{2}+1}} d x$
$=\int \frac{x^{2}-1}{x^{5} \sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}} d x $
$=\int \frac{\left(\frac{1}{x^{3}}-\frac{1}{x^{5}}\right) d x}{\sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}}$
$=\frac{1}{2} \int \frac{t d t}{t},$
Let $2-\frac{2}{x^{2}}+\frac{1}{x^{4}}=t^{2}$
$\Rightarrow \left(\frac{2}{25}-\frac{4}{25}\right) d x=2 t d t$
$=(1 / 2) t+c$
$=\frac{1}{2} \sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}+c$