Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \int\, \frac{sin\,2x}{sin^{4}\,x+cos^{4}\,x}dx $ is

MHT CETMHT CET 2012

Solution:

Let $I=\int \frac{\sin \,2 x}{\sin ^{4} x+\cos ^{4} x} d x$
$I=\int \frac{\sin 2 x}{\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cdot \cos ^{2} x} dx$
$I=\int \frac{\sin 2 x}{1-\frac{1}{2}(\sin 2 x)^{2}} dx$
$= 2 \int \frac{\sin \,2 x}{1+\left(1-\sin ^{2} 2 x\right)} d x $
(let $t=\cos 2 x$
$ \Rightarrow dt=-2 \sin \,2 x \,d x $
$= \int \frac{-d t}{1+t^{2}}$
$=-tan ^{-1} t+C $
$=-\tan ^{-1}(\cos 2x)+C$