Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\int\limits_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{4-\sin ^{2} \theta}} d \theta$ is :

Bihar CECEBihar CECE 2003

Solution:

Let $I =\int\limits_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{4-\sin ^{2} \theta}} d \theta$
Put $\sin \theta =t$
$\Rightarrow \cos \theta d \theta=d t$
$\therefore I =\int\limits_{0}^{1} \frac{d t}{\sqrt{4-t^{2}}}$
$=\left[\sin ^{-1} \frac{t}{2}\right]_{0}^{1}=\sin ^{-1} \frac{1}{2}$
$=\frac{\pi}{6}$