Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\int \frac{e^{6 \log x} -e^{5 \log x}}{e^{4 \log x} - e^{3 \log x}} dx$ is equal to

KCETKCET 2016Integrals

Solution:

Let $ I =\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x $
$=\int \frac{x^{6}-x^{5}}{x^{4}-x^{3}} d x \left[\because e^{y \log x}=x^{y}\right]$
$=\int \frac{x^{5}(x-1)}{x^{3}(x-1)} d x=\int x^{2} d x $
$=\frac{x^{3}}{3}+C $