Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ limits2 π 0 [ 2 sin x ] dx , where [.] represents the greatest integral functions, is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of $ \int \limits^{2 \pi} _ 0 [ 2 \, \sin \, x ] \, dx , $ where [.] represents the greatest integral functions, is
IIT JEE
IIT JEE 1995
Integrals
A
$ - \frac{ 5 \pi}{ 3 } $
35%
B
$ - \pi $
17%
C
$ \frac { 5 \pi }{ 3 } $
22%
D
$ - 2 { \pi } $
26%
Solution:
It is a question of greatest integer function. We have, subdivide the interval $\pi$ to $2 \pi$ as under keeping in view that we have to evaluate $[2 \sin x$ ]
We know that, $\sin \frac{\pi}{6}=\frac{1}{2}$
$\therefore \sin \left(\pi+\frac{\pi}{6}\right)=\sin \frac{7 \pi}{6}=-\frac{1}{2} $
$\Rightarrow \sin \frac{11 \pi}{6}=\sin \left(2 \pi-\frac{\pi}{6}\right)=-\sin \frac{\pi}{6}=-\frac{1}{2} $
$\Rightarrow \sin \frac{9 \pi}{6}=\sin \frac{3 \pi}{6}=-1$
Hence, we divide the interval $\pi$ to $2 \pi$ as
$\left(\pi, \frac{7 \pi}{6}\right),\left(\frac{7 \pi}{6}, \frac{11 \pi}{6}\right),\left(\frac{11 \pi}{6}, 2 \pi\right) $
$ \sin x=\left(0,-\frac{1}{2}\right),\left(-1,-\frac{1}{2}\right),\left(-\frac{1}{2}, 0\right) $
$\Rightarrow 2 \sin x=(0,-1),(-2,-1),(-1,0)$
$\Rightarrow [2 \sin x] =-1 $
$=\int\limits_{\pi}^{7 \pi / 6}[2 \sin x] d x+\int\limits_{7 \pi / 6}^{11 \pi / 6}[2 \sin x] d x $
$+\int\limits_{11 \pi / 6}^{2 \pi}[2 \sin x] d x $
$=\int\limits_{\pi}^{7 \pi / 6}-1 d x+\int\limits_{7 \pi / 6}^{11 \pi / 6}-2 d x+\int\limits_{11 \pi / 6}^{2 \pi}-1 d x $
$=-\frac{\pi}{6}-2\left(\frac{4 \pi}{6}\right)-\frac{\pi}{6}=-\frac{10 \pi}{6}=-\frac{5 \pi}{3} $