Thank you for reporting, we will resolve it shortly
Q.
The value of ∫π/20dx1+tanx is
J & K CETJ & K CET 2013Integrals
Solution:
Let l=∫dx1+tanx ⇒l∫cosxsinx+cosxdx .. (i)
and l=∫π/20cos(π2−x)sin(π2−x)+cos(π2−x)dx ⇒l=∫π/20sinxcosx+sinxdx .. (ii) {∵∫a0f(x)dx=∫a0f(a−x)dx}
On adding Eqs. (i) and (ii), we get 2l=∫π/20sinx+cosxsinx+cosxdx=∫π/201dx=[x]π/20 ⇒2l=π2⇒l=π4