Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \int_{0}^{1}{x\,{{(1-x)}^{99}}}\,dx $ is equal to:

KEAMKEAM 2001

Solution:

Let $ I=\int_{0}^{1}{x}{{(1-x)}^{99}}dx $ Put $ 1-x=t\Rightarrow -dx=dt $ $ \therefore $ $ I=\int_{1}^{0}{(1-t)}{{t}^{99}}dt $ $ =\int_{0}^{1}{[{{t}^{99}}-{{t}^{100}}]}dt=\left[ \frac{{{t}^{100}}}{100}-\frac{{{t}^{101}}}{101} \right]_{0}^{1} $ $ =\frac{1}{100}-\frac{1}{101}=\frac{1}{10100} $