Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of integral $\int\limits^{\pi}_{0}xf\left(\sin\,x\right)dx$ is

WBJEEWBJEE 2007

Solution:

Let $I=\int\limits^{\pi}_{0}xf\left(\sin\,x\right)dx$

$\Rightarrow I=\int\limits^{\pi}_{0}\left(\pi-x\right)\,f\,\left\{\sin\left(\pi-x\right)\right\}dx$

$=\pi\,\int\limits^{\pi}_{0}\,f\left(\sin\,x\right)dx-x\, \int\limits^{\pi}_{0} \,f(\sin\,x)dx$

$\Rightarrow I=\pi \int\limits^{\pi}_{0} \,f(\sin\,x)dx-I$

$\Rightarrow 2I=\pi\,\int\limits^{\pi}_{0}\,f\left(\sin\,x\right)dx$

$\Rightarrow 2I=2\pi\,\int\limits^{\pi/2}_{0}\,f\left(\sin\,x\right)dx$

$\Rightarrow I=\pi\,\int\limits^{\pi/2}_{0}\,f\left(\sin\,x\right)dx$