Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of integral $\int\limits_{-1}^{1} \frac{\left|x+2\right|}{x+2} dx$ is

WBJEEWBJEE 2009Integrals

Solution:

Let $I=\int\limits_{-1}^{1} \frac{\left|x+2\right|}{x+2}dx$

For $-1\le\,x\, \le\,1, \left|x+2\right|=2+x$

$\therefore \, I=\int\limits_{-1}^{1} \frac{x+2}{x+2}dx$

$=\int\limits_{-1}^{1}1\,dx$

$=\left[x\right]_{-1}^{1}=1-\left(-1\right)$

$=2$