Thank you for reporting, we will resolve it shortly
Q.
The value of $I = \int\limits^{\pi/ 2}_{0} \frac{\left(sin\, x + cos \,x\right)^{2}}{\sqrt{1+sin\,2x}}dx$ is
AIEEEAIEEE 2004Integrals
Solution:
$ \int\limits^{\frac{\pi}{2}}_{0} \frac{\left(sin\, x + cos \,x\right)^{2}}{\sqrt{\left(sin\, x + cos \,x\right)^{2}}}dx = \int\limits^{\frac{\pi}{2}}_{0}\left(sin\, x + cos \,x\right)dx = \left|sin\, x + cos \,x\right|^{\frac{\pi}{2}}_{0} = 2.$