Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of expression (1/ cos 290°)+(1/√3 sin 250°) is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of expression $\frac{1}{\cos 290^{\circ}}+\frac{1}{\sqrt{3} \sin 250^{\circ}}$ is equal to
Bihar CECE
Bihar CECE 2009
A
$ \frac{\sqrt{3}}{4} $
B
$ \frac{4}{\sqrt{3}} $
C
$ \frac{2}{\sqrt{3}} $
D
$ \frac{\sqrt{3}}{2} $
Solution:
$\frac{1}{\cos 290^{\circ}} +\frac{1}{\sqrt{3} \sin 250^{\circ}}$
$=\frac{1}{\cos 70^{\circ}}-\frac{1}{\sqrt{3} \sin 110^{\circ}}$
$=\frac{\sqrt{3} \sin 110^{\circ}-\cos 70^{\circ}}{\sqrt{3} \sin 110^{\circ} \cos 70^{\circ}}$
$=\frac{\sqrt{3} \sin \left(180^{\circ}-70^{\circ}\right)-\cos 70^{\circ}}{\sqrt{3} \sin \left(180-70^{\circ}\right) \cos 70^{\circ}}$
$=\frac{\frac{\sqrt{3}}{2} \sin 70^{\circ}-\frac{1}{2} \cos 70^{\circ}}{\frac{\sqrt{3}}{2} \sin 70 \cos 70^{\circ}}$
$=\frac{\cos 30^{\circ} \sin 70^{\circ}-\sin 30^{\circ} \cos 70^{\circ}}{\frac{\sqrt{3}}{2} \cdot \frac{1}{2} \sin 140^{\circ}}$
$=\frac{\sin \left(70^{\circ}-30^{\circ}\right)}{\frac{\sqrt{3}}{4} \sin \left(180^{\circ}-40^{\circ}\right)}$
$=\frac{\sin 40^{\circ}}{\frac{\sqrt{3}}{4} \sin 40^{\circ}}=\frac{4}{\sqrt{3}}$