Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\displaystyle\sum_{r=1}^{\infty}\left[3 \cdot 2^{-r}-2 \cdot 3^{1-r}\right]$ is

ManipalManipal 2018

Solution:

$\displaystyle\sum_{r=1}^{\infty}\left[3 \cdot 2^{-r}-2 \cdot 3^{1-r}\right]$
$=3 \displaystyle\sum_{r=1}^{\infty} \frac{1}{2^{r}}-2 \displaystyle\sum_{r=1}^{ n } 3^{1-r}$
$=3\left[\frac{1}{2}+\frac{1}{2^{2}}+\ldots \infty\right]-2\left[1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots \infty\right]$
$=\frac{3}{2}\left[1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots\right]-2\left[1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots \infty\right]$
$=\frac{3}{2}\left(\frac{1}{1-\frac{1}{2}}\right)-2\left(\frac{1}{1-\frac{1}{3}}\right)$
$=\frac{3}{2} \times 2-\frac{2 \times 3}{2}=0$