Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \displaystyle\sum_{r=1}^{16}\left(\sin\frac{2r\pi}{17}+i\,\cos \frac{2r\pi}{17}\right) $ is

Complex Numbers and Quadratic Equations

Solution:

We have $\displaystyle\sum_{r=1}^{16}$ $\left(sin \frac{2r\,\pi}{17}+i\,cos \frac{2r\,\pi}{17}\right)$
$=i \displaystyle\sum_{r=1}^{16}$ $\left(cos \frac{2r\,\pi}{17}+i\,sin \frac{2r\,\pi}{17}\right)$
$=i\left(z+z^{2}+......+z^{16}\right)$
[where $z= cos \frac{2\,\pi}{17}-i\,sin \frac{2\,\pi}{17}$]
$=i \frac{z\left(1-z^{16}\right)}{1-z}=\frac{i\left(z-z^{17}\right)}{1-z}=\frac{i\left(z-1\right)}{1-z}=i$
$\left[\because z^{17}=1\right]$