Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle∑r=06( 6 C r ⋅ 6 C 6- r ) is equal to :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of $\displaystyle\sum_{r=0}^{6}\left({ }^{6} C _{ r } \cdot{ }^{6} C _{6- r }\right)$ is equal to :
JEE Main
JEE Main 2021
Binomial Theorem
A
1124
22%
B
1324
33%
C
1024
22%
D
924
22%
Solution:
$\displaystyle\sum_{x=0}^{6}{ }^{6} C _{ r } \cdot{ }^{6} C _{6- r } $
$=\,{ }^{6} C _{0} \cdot { }^{6} C _{6}+{ }^{6} C _{1} \cdot{ }^{6} C _{5}+\ldots \ldots+{ }^{6} C _{6} \cdot{ }^{6} C _{0}$
Now,
$(1+x)^{6}(1+x)^{6} $
$=\left({ }^{6} C_{0}+{ }^{6} C_{1} x+{ }^{6} C_{2} x^{2}+\ldots . .+{ }^{6} C_{6} x^{6}\right) $
$\left({ }^{6} C_{0}+{ }^{6} C_{1} x+{ }^{6} C_{2} x^{2}+\ldots \ldots+{ }^{6} C_{6} x^{6}\right)$
Comparing coefficeint of $x^{6}$ both sides
${ }^{6} C _{0} \cdot{ }^{6} C _{6}+{ }^{6} C _{1}+{ }^{6} C _{5}+\ldots \ldots .+{ }^{6} C _{6} \cdot{ }^{6} C _{0}={ }^{12} C _{6} $
$=924$