Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle∑n=110 displaystyle∑m=110(m2+n2) equals
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of $\displaystyle\sum_{n=1}^{10} \displaystyle\sum_{m=1}^{10}\left(m^{2}+n^{2}\right)$ equals
Sequences and Series
A
4235
11%
B
5050
11%
C
7700
56%
D
none of these
22%
Solution:
$\displaystyle\sum_{n=1}^{10} \displaystyle\sum_{m=1}^{10}\left(m^{2}+n^{2}\right)$
$=\displaystyle\sum_{n=1}^{10}\left[\left(1^{2}+n^{2}\right)+\left(2^{2}+n^{2}\right)+\cdots+\left(10^{2}+n^{2}\right)\right]$
$=10\left[(1)^{2}+(2)^{2}+\ldots+(10)^{2}\right]+10\left[(1)^{2}+(2)^{2}+\ldots+(10)^{2}\right]$
$=\frac{20 \cdot 10 \cdot 11 \cdot 21}{6}$
$=7700$