Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\displaystyle\lim _{x \rightarrow \infty}\left(x+e^{x}\right)^{2 / x}$ is

Limits and Derivatives

Solution:

$y=\displaystyle\lim _{x \rightarrow \infty}\left(x+e^{x}\right)^{2 / x}\left(\infty^{0}\right.$ form $)$
$\therefore \log y=\displaystyle\lim _{x \rightarrow \infty} 2 \frac{\log \left(x+e^{x}\right)}{x}(\frac{\infty}{\infty}.$ form $)$
$=2 \cdot \displaystyle\lim _{x \rightarrow \infty} \frac{1+e^{x}}{x+e^{x}} $ (Using L'Hospital's Rule)
$=2 \cdot \displaystyle\lim _{x \rightarrow \infty} \frac{0+e^{x}}{1+e^{x}} $ (Using L'Hospital's Rule)
$=2 \cdot\displaystyle \lim _{x \rightarrow \infty} \frac{e^{x}}{0+e^{x}}=2 $ (Using L'Hospital's Rule)
$\therefore y=e^{2}$