Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\displaystyle\lim_{x \to 0} \frac{|3x^2 + 1|}{2x^2 + 1}$ is :

Limits and Derivatives

Solution:

Consider $\displaystyle\lim_{x \to 0} \frac{|3x^2 + 1|}{2x^2 + 1}$
$= \displaystyle\lim_{x\to0} \frac{3x^{2} +1}{2x^{2} +1} = \displaystyle\lim _{x\to 0} \frac{x^{2}\left(3 + \frac{1}{x^{2}}\right)}{x^{2} \left(2+ \frac{1}{x^{2}}\right)}$
$ =\displaystyle\lim _{x\to 0} \frac{3+1 /x^{2}}{2+1 /x^{2}} = \frac{3+0}{2+0} =\frac{3}{2}$