Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\int \frac{x \, d x}{\left(\right. x + 3 \left.\right) \sqrt{x + 1}}$ is (where, $c$ is the constant of integration)

NTA AbhyasNTA Abhyas 2022

Solution:

Substitute $\sqrt{x + 1}=t$ , we get,
$2\int \frac{t^{2} - 1}{t^{2} + 2} \, \, dt=2t-6\int \frac{1}{t^{2} + 2} \, dt$
$=2t-3\sqrt{2}tan^{- 1}\frac{t}{\sqrt{2}}+c$
$=2\sqrt{x + 1}-3\sqrt{2}tan^{- 1}\sqrt{\frac{x + 1}{2}}+c$