Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of definite integral $\int\limits_1^{\sqrt{2}} x \tan ^{-1}\left(x^2-1\right) d x$ equals

Integrals

Solution:

Put $x^2-1=t$
$I =\frac{1}{2} \int\limits_0^1 \tan ^{-1} tdt =\frac{1}{2}\left[\left.\tan ^{-1} t \cdot t \right|_0 ^1-\int\limits_0^1 \frac{ t }{1+ t ^2} dt \right] $
$I =\frac{\pi}{8}-\frac{1}{2} \cdot \frac{1}{2} \ln (2)=\frac{\pi}{8}-\frac{\ln 2}{4} $