Thank you for reporting, we will resolve it shortly
Q.
The value of definite integral $2 \int\limits_0^{\frac{1}{\sqrt{2}}} \frac{\sin ^{-1} x}{x} d x-\int\limits_0^1 \frac{\tan ^{-1} x}{x} d x$ is equal to
Integrals
Solution:
Put $\sin ^{-1} x = t$ in first integral and $\tan ^{-1} x = t$ in second integral, we get
$I=\int\limits_0^{\pi / 4}(2 t) \cdot(\cot 2 t) d t$
Put $2 t=y$; we get
$I =\frac{1}{2} \int\limits_0^{\pi / 2} \underset{(I)}{y} \cdot(\underset{(II)}{\cot} y ) dy =\frac{\pi}{4} \ln 2$