Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\frac{d}{dx} [x^n \log_a xe^x ] = $

Limits and Derivatives

Solution:

$\frac{d}{dx} \left[x^{n} \left(\log_{a} x\right)e^{x}\right] $
$=x^{n} \log_{a} x. e^{x} +x^{n}e^{x}. \frac{1}{x} \log_{a}e + nx^{n-1} \log_{a}x . e^{x} $
$= e^{x} \left[x^{n} \log_{a} x+x^{n-1} \log_{a} e + nx^{n-1} \log_{a}x\right] $
$= x^{ n-1} e^{x} \left[x \log_{a} x + \frac{1}{\log_{e}a} + n \log_{a}x\right]$