Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\cos(\pi / 4 + x) + \cos( \pi / 4 - x)$ is

KEAMKEAM 2017

Solution:

We have, $\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$
$=\cos \frac{\pi}{4} \cos x-\sin \frac{\pi}{4} \sin x+\cos \frac{\pi}{4} \cos x+\sin \frac{\pi}{4} \sin x$
$=2 \cos \frac{\pi}{4} \cos x$
$=2 \times \frac{1}{\sqrt{2}} \cos x$
$=\sqrt{2} \cos x$