Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\left[ \cos \left( \frac{\pi }{{{2}^{2}}} \right)+i\sin \left( \frac{\pi }{{{2}^{2}}} \right) \right] $ $ \left[ \cos \left( \frac{\pi }{{{2}^{3}}} \right)+i\sin \left( \frac{\pi }{{{2}^{3}}} \right) \right].....\infty $ is:

KEAMKEAM 2003

Solution:

$ \left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\left( \cos \frac{\pi }{{{2}^{2}}}+i\sin \frac{\pi }{{{2}^{2}}} \right)....\infty $ $ =\cos \left( \frac{\pi }{2}+\frac{\pi }{{{2}^{2}}}+....\infty \right)+i\sin \left( \frac{\pi }{2}+\frac{\pi }{{{2}^{2}}}+....\infty \right) $ $ =\cos \left( \frac{\pi }{2}.\frac{1}{1-\frac{1}{2}} \right)+i\sin \left( \frac{\pi }{2}.\frac{1}{1-\frac{1}{2}} \right) $ $ =\cos \pi +i\sin \pi $ $ =-1 $