Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ((cos 20° + sin 20° )(cos 75° + sin 75° )(cos 10° + sin 10°)/sin 15° -i cos 15°)is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of $ \frac {(cos 20^\circ + sin 20^\circ )(cos 75^\circ + sin 75^\circ )(cos 10^\circ + sin 10^\circ)}{sin 15^\circ -i cos 15^\circ}is$
A
0
B
$1/\sqrt{3}$
C
i
D
1
Solution:
Use of Trigonometric Identities
$ \cos x+\cos y=2 \cos \frac{(x+y)}{2} \cos \frac{(x-y)}{2}-(1) $
$ \sin x-\sin y=2 \cos \frac{(x+y)}{2} \sin \frac{(x-y)}{2}-(2) $
Calculation:
$ \begin{array}{l} \text { Given: } \\ \frac{\sin 75^{\circ}-\sin 15^{\circ}}{\cos 75^{\circ}+\cos 15^{\circ}} \end{array} $
From equation (1) and (2);
$ \begin{array}{l} =\frac{2 \cos \frac{75+15}{2} \cdot \sin \frac{75-15}{2}}{2 \cdot \cos \frac{75+15}{2} \cdot \cos \frac{75-15}{2}} \\ =\frac{\sin 30^{\circ}}{\cos 30^{\circ}} \\ =\tan 30=\frac{1}{\sqrt{3}} \end{array} $