Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\cos ^2 x+\cos ^2\left(x+\frac{\pi}{3}\right)+\cos ^2\left(x-\frac{\pi}{3}\right)$ is equal to

Trigonometric Functions

Solution:

We have, $\cos ^2 x+\cos ^2\left(x+\frac{\pi}{3}\right)+\cos ^2\left(x-\frac{\pi}{3}\right)$
$=\frac{1+\cos 2 x}{2}+\frac{1+\cos \left(2 x+\frac{2 \pi}{3}\right)}{2}+\frac{1+\cos \left(2 x-\frac{2 \pi}{3}\right)}{2}$
$=\frac{1}{2}\left[3+\cos 2 x+\cos \left(2 x+\frac{2 \pi}{3}\right)+\cos \left(2 x-\frac{2 \pi}{3}\right)\right]$
$=\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \frac{2 \pi}{3}\right]$
$=\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(\pi-\frac{2 \pi}{3}\right)\right.$
$=\frac{1}{2}\left[3+\cos 2 x-2 \cos 2 x \cos \frac{\pi}{3}\right]$
$=\frac{1}{2}[3+\cos 2 x-\cos 2 x]=\frac{3}{2}$