Thank you for reporting, we will resolve it shortly
Q.
The value of ' $a$ ' for which the function $f(x)=\sin x-\cos x-a x+b$ decreases for all real values of $x$, is -
Application of Derivatives
Solution:
$f ( x )=\sin x -\cos x - ax + b$
$f ^{\prime}( x )=\cos x +\sin x - a \leq 0 \forall x \in R$
$\Rightarrow a \geq \cos x +\sin x \forall x \in R$
$\Rightarrow a \geq \sqrt{2}$