Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of √3 cot 20° -4 cos 20° is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of $ \sqrt{3}\cot 20{}^\circ -4\cos 20{}^\circ $ is equal to
Jamia
Jamia 2010
A
1
B
$ -1 $
C
0
D
None of these
Solution:
$ \sqrt{3}\cot 20{}^\circ -4\cos 20{}^\circ $ $ =\frac{\sqrt{3}\cos 20{}^\circ }{\sin 20{}^\circ }-4\cos 20{}^\circ $ $ =\frac{\sqrt{3}\cos 20{}^\circ -4\sin 20{}^\circ \cos 20{}^\circ }{\sin 20{}^\circ } $ $ =\frac{2.\sin 60{}^\circ \cos 20{}^\circ -2\sin 40{}^\circ }{\sin 20{}^\circ } $ $ [\because \sqrt{3}=2.\frac{\sqrt{3}}{2}=2\sin 60{}^\circ $ and $ 2\sin 20{}^\circ \cos 20{}^\circ =\sin 40{}^\circ ] $ $ =\frac{\sin 80{}^\circ +\sin 40{}^\circ -2\sin 40{}^\circ }{\sin 20{}^\circ } $ [using $ 2\text{ }sin\text{ }A\text{ }cos\text{ }B $ $ =sin(A+B)+sin(A-B)] $ $ =\frac{\sin 80{}^\circ -\sin 40{}^\circ }{\sin 20{}^\circ } $ $ =\frac{2\cos 60{}^\circ \sin 20{}^\circ }{\sin 20{}^\circ }=2.\frac{1}{2}=1 $ [using $ sin\text{ }C-sin\text{ }D=2\cos \frac{C+D}{2}.\sin \frac{C-D}{2} $ ]