Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ {{2}^{1/4}}\cdot {{4}^{1/8}}\cdot {{8}^{1/16}}\cdot {{16}^{1/32}}... $

Jharkhand CECEJharkhand CECE 2008

Solution:

Let $ S={{2}^{1/4}}\cdot {{4}^{1/8}}\cdot {{8}^{1/16}}\cdot {{16}^{1/32}} $
$ ={{2}^{1/4}}\cdot {{2}^{2/8}}\cdot {{2}^{3/16}}\cdot {{2}^{4/32}} $
$ ={{2}^{\left( \frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{4}{32}+... \right)}} $
Let $ {{S}_{1}}=1+2\cdot \frac{1}{2}+3\cdot \frac{1}{{{2}^{2}}}+4\cdot \frac{1}{{{2}^{3}}}+... $ .. (i)
$ \therefore $ $ \frac{1}{2}{{S}_{1}}=\frac{1}{2}+2\cdot \frac{1}{{{2}^{2}}}+3\cdot \frac{1}{{{2}^{3}}}+... $ .. (ii)
On subtracting Eq. (i) from Eq. (ii), we get
$ \frac{1}{2}{{S}_{1}}=1+\frac{1}{2}+\frac{1}{{{2}^{2}}}+\frac{1}{{{2}^{3}}}+... $
$ =\frac{1}{1-\frac{1}{2}} $
$ \Rightarrow $ $ \frac{1}{2}{{S}_{1}}=2 $
$ \Rightarrow $ $ {{S}_{1}}=4 $
$ \therefore $ $ S={{2}^{\frac{1}{4}(4)}}=2 $