Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\frac{\left(1+\tan 8^{\circ}\right)\left(1+\tan 37^{\circ}\right)}{\left(1+\tan 22^{\circ}\right)\left(1+\tan 23^{\circ}\right)}$ is

Trigonometric Functions

Solution:

$37^{\circ}=45^{\circ}-8^{\circ}$
$\Rightarrow \tan 37^{\circ}=\frac{1-\tan 8^{\circ}}{1+\tan 8^{\circ}} $
$\Rightarrow 1+\tan 37^{\circ}=\frac{2}{1+\tan 8^{\circ}}$
Similarly $1+\tan 23^{\circ}=\frac{2}{1+\tan 22^{\circ}}$
$\therefore \frac{\left(1+\tan 8^{\circ}\right)\left(1+\tan 37^{\circ}\right)}{\left(1+\tan 22^{\circ}\right)\left(1+\tan 23^{\circ}\right)}=1$