Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \left(\frac{1+i}{1-i}\right)^{1000}+ \left(\frac{1-i}{1+i}\right)^{2000} $ is equal to

J & K CETJ & K CET 2016Complex Numbers and Quadratic Equations

Solution:

$\left(\frac{1+i}{1-i}\right)^{1000} + \left(\frac{ 1- i}{1+i}\right)^{2000}$
$= \left(\frac{ 1+i}{1-i} \times \frac{1+i}{1+i}\right)^{1000} + \left(\frac{1+i^{2} - 2i}{1-i^{2}}\right)^{2000} $
$ = i^{1000} + \left(-i\right)^{2000}$
$ = i^{4\times250} + \left[\left(-i\right)^{2}\right]^{4\times250} $
$= 1 + 1 = 2$