Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The value closest to the thermal velocity of a Helium atom at room temperature (300 K) in ms-1 is: [kB = 1.4 × 10-23 J/K; mHe = 7 × 10-27 kg ]
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value closest to the thermal velocity of a Helium atom at room temperature $(300\, K)$ in $ms^{-1}$ is :$ [k_B = 1.4 \times 10^{-23} \, J/K; m_{He} = 7 \times 10^{-27} \, kg ]$
JEE Main
JEE Main 2018
Kinetic Theory
A
$1.3 \times 10^4$
16%
B
$1.3 \times 10^3$
39%
C
$1.3 \times 10^5$
30%
D
$1.3 \times 10^2$
15%
Solution:
We know that $v_{ rms }=\sqrt{\frac{3 k T}{m}}$.
Given, $k=1.4 \times 10^{-23} \,J / K ; T=300 \,K ; m=7 \times 10^{-27}\, kg$. Therefore,
$v_{ rms } =\sqrt{\frac{3 \times 1.4 \times 10^{-23} \times 300}{7 \times 10^{-27}}}=\sqrt{\frac{3 \times 300 \times 14 \times 10^{-23}}{7 \times 10 \times 10^{-27}}}=\sqrt{\frac{3^{2} \times 10^{2} \times 2 \times 10^{4}}{10}} $
$=3 \times 10 \times 10^{2} \times \sqrt{\frac{2}{10}} $
$=3 \times \sqrt{10} \times 10^{2} \times \sqrt{2}=3 \times \sqrt{2} \times \sqrt{5} \times 10^{2} \times \sqrt{2}=3 \times 2 \times \sqrt{5} \times 10^{2}$
$v_{ rms } =6 \times 10^{2} \times \sqrt{5}=13.41 \times 10^{2}$
or $ v_{ rms }=1.34 \times 10^{3}$