Let the unit vector $\frac{\hat{i} +\hat{j}}{\sqrt{2}}$ is perpendicular to $\hat{i} - \hat{j}$, then we get
$\frac{\left(\hat{i} +\hat{j}\right)\cdot\left(\hat{i} -\hat{j}\right)}{\sqrt{2}} = \frac{1-1}{\sqrt{2}} = 0$
$\therefore \frac{\hat{i} +\hat{j}}{\sqrt{2}}$ is the unit vector