Thank you for reporting, we will resolve it shortly
Q.
The transverse displacement $y(x, t) $ of a wave on a string is given by $y\left(x, t\right) = e^{-\left(ax^2+bt^2+2 \sqrt{ab} xt\right)}$
This represents a
$y\:\left(x,\:t\right)\:=\:e^{-\left(ax^2+\:bt^2\:+2\sqrt{ab\:xt}\right)}\:=\:e^{-\left(\sqrt{ax}+\sqrt{bt}\right)^2}$
It is a function of type y = $f \left(\omega t +kx\right) $
$ \therefore y \left(x,t\right)$ represents wave travelling along -x direction.
Speed of wave $= \frac{\omega}{k} = \frac{\sqrt{b}}{\sqrt{a}} =\sqrt{\frac{b}{a}}.$