Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The total number of ways of selecting five letters from the letters of the word INDEPENDENT, is

Permutations and Combinations

Solution:

There are $11$ letters in the word INDEPENDENT. $3 N , 3 E , 2 D , I , P , T$ ($6$ types)
Different possibilities of choosing 5 letters are
(A) All different
Number of ways $={ }^{6} C_{5} \times 5 !=6 \times 120=720$.
(B) $2$ alike, $3$ different
Number of ways $={ }^{3} C_{1} \times{ }^{5} C_{3} \times \frac{5 !}{2 !}=3 \times 10 \times 60=1800$
(C) $3 $ alike, $2 $ different
Number of ways $={ }^{2} C_{1} \times{ }^{5} C_{2} \times \frac{5 !}{3 !}$ $=2 \times 10 \times 20=400$
(D) $2$ alike, $2$ alike, $1$ different
$={ }^{3} C_{2} \times{ }^{4} C_{1} \times \frac{5 !}{2 ! 2 !}=3 \times 4 \times 30=360$
(E) $3$ alike, $2$ alike $={ }^{2} C_{1} \times{ }^{2} C_{1} \times \frac{5 !}{3 ! 2 !}$ $=2 \times 2 \times 10=40$
Hence, total number of ways
$=720+1800+400+360+40=3320 $