Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The total number of acyclic isomers including the stereoisomers with the molecular formula $ {{C}_{4}}{{H}_{7}}Cl $ is:

Haryana PMTHaryana PMT 1999

Solution:

$ {{C}_{4}}{{H}_{7}}Cl $ is ammonochloro derivative of $ {{C}_{4}}{{H}_{10}} $ which it self exists in three ispmeric forms. (i) $ C{{H}_{3}}-C{{H}_{2}}-CH=C{{H}_{2}} $ : Its possible monochloro derivatives are: $ \underset{2\,\text{isomers cis and trands (2 from)}}{\mathop{C{{H}_{3}}-C{{H}_{2}}CH=CH-Cl}}\, $ $ \underset{\text{one isomer (one form)}}{\mathop{C{{H}_{3}}-C{{H}_{2}}-\underset{Cl}{\mathop{\underset{|}{\mathop{C}}\,}}\,=C{{H}_{2}}}}\, $ $ \underset{\text{optically active (exists in two forms)}}{\mathop{C{{H}_{3}}-\underset{Cl}{\mathop{\underset{|}{\mathop{C}}\,}}\,H-CH=C{{H}_{2}}}}\, $ (ii) $ C{{H}_{3}}-CH=CH-C{{H}_{3}} $ : Its possible monochloro derivatives are: $ \underset{(\text{Exists in two geometrical forms)}}{\mathop{C{{H}_{3}}-CH=\underset{Cl}{\mathop{\underset{|}{\mathop{C}}\,}}\,-C{{H}_{3}}}}\, $ $ \underset{(\text{Exists in two geometrical forms)}}{\mathop{C{{H}_{3}}-CH=CH-C{{H}_{2}}Cl}}\, $ (iii) $ C{{H}_{3}}-\underset{C{{H}_{3}}}{\mathop{\underset{|}{\mathop{C}}\,}}\,=C{{H}_{2}} $ : Its possible mono- chloro derivatives are: $ \underset{Only\,one\,form}{\mathop{C{{H}_{3}}-\underset{C{{H}_{3}}}{\mathop{\underset{|}{\mathop{C}}\,}}\,=CH-Cl;}}\, $ $ \underset{Only\,one\,form}{\mathop{Cl-C{{H}_{2}}-\underset{C{{H}_{3}}}{\mathop{\underset{|}{\mathop{C}}\,}}\,=C{{H}_{2}}}}\, $ Thus, the total acyclic isomeric forms of $ {{C}_{4}}{{H}_{7}}Cl $ are twelve (12).