Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The total energy of the body executing simple harmonic motion (SHM) is E. Then the kinetic energy when the displacement is half of the amplitude is

Oscillations

Solution:

TotaI energy in SHM
$e =\frac{1}{2}m\omega^2 a^2 ,(where , a=amplitude)$
Kinetic energy K $=\frac{1}{2} m \omega^2 (a^2 -y^2)$
$ \, \, \, \, \, \, \, \, \, \, \, \, =E -\frac{1}{2}m\omega^2 y^2$
$when \, y=\frac{a}{2} $
$\Rightarrow \, \, \, \, \, \, \, \, K=E -\frac{1}{2}m \omega^2 \bigg(\frac{a^2}{4}\bigg)=E-\frac{E}{4}$
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, E =\frac{3E}{4}$