Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The time period of revolution of a charge $q_1$ and of mass $m$ moving in a circular path of radius $r$ due to Coulomb force of attraction with another charge $q_2$ at its centre is

KEAMKEAM 2014

Solution:

Centripetal force $F=\frac{m v^{2}}{r}\,...(i)$
and electrostatic force
$F=K \cdot \frac{q_{1} \cdot q_{2}}{r^{2}}\,...(ii)$
Equating both equation
$\frac{m v^{2}}{r} =K \cdot \frac{q_{1} q_{2}}{r^{2}} $
$v =\sqrt{\frac{K}{m} \cdot \frac{q_{1} q_{2}}{r}}$
The time period of revolution
$T=\frac{2 \pi r}{V}$
$=2 \pi r \sqrt{\frac{m \cdot r}{K \cdot q_{1} q_{2}}} $
$ =\sqrt{\frac{4 \pi^{2} r^{2} m r}{K \cdot q_{1} q_{2}}} \,\left(\because K=\frac{1}{4 \pi \varepsilon_{0}}\right) $
$T=\sqrt{\frac{4 \pi^{2} r^{2} m r \cdot 4 \pi \varepsilon_{0}}{q_{1} q_{2}}} $
$=\sqrt{\frac{16 \pi^{3} \varepsilon_{0} m r^{3}}{q_{1} q_{2}}} $