Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Question
The thermodynamic cycle of an engine operating with an ideal monatomic gas is represented by the $P-V$ diagram as shown in the above figure. Find the efficiency and the amount of heat extracted from the source in a single cycle.

NTA AbhyasNTA Abhyas 2020

Solution:

Solution
Let $Q$ be the heat extracted per cycle,
$C_{v}=$ specific heat at constant volume,
$C_{p}=$ specific heat at constant pressure
$Q=nC_{v}\left(d T\right)+nC_{p}\left(d T\right)\Rightarrow Q=nC_{v}\left(2 T_{0} - T_{0}\right)+nC_{p}\left(4 T_{0} - 2 T_{0}\right)$
For monoatomic gas,
$C_{v}=$ $\frac{f R}{2}$
$C_{p}=\frac{\left(\right. f + 2 \left.\right) R}{2}$
$C_{v}=\frac{3 R}{2},C_{p}=\frac{5 R}{2}$
$Q=\frac{n \left(\right. 3 R \left.\right) T_{0}}{2}+\frac{n 5 R}{2}\left(2 T_{0}\right)=\frac{13}{2}nRT_{0}$
$Q=\frac{13}{2}P_{0}V_{0}$
$W=$ area bounded by curve $=P_{0}V_{0}$
Let $\eta=$ efficiency during the cycle,
$\eta=\frac{W}{Q}\times 100\Rightarrow \eta=\frac{P_{0} V_{0}}{\frac{13 P_{0} V_{0}}{2}}\times 100\Rightarrow \eta=\frac{2}{13}\times 100\Rightarrow \eta=15.4\%$