Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The temperature of the gas consisting of rigid diatomic molecules is T = 300K. Calculate the angular root mean square velocity of a rotating moelcule if its moment of inertia is equal to $I = 2 .1 \times 10^{-39} g\,cm^2$.

Kinetic Theory

Solution:

By formula,
if $I$ is the moment of inertia then
$
\frac{1}{\alpha} I \omega^{2}=\frac{1}{2} \times f \times K_{B} T
$
where $f=$ degree of freedom
$K_{B}=$ Bult mann conotant
$T=$ temperature
the root mean square angular velocity,
$
\begin{array}{r}
\omega^{2}=\frac{f K_{B} T}{I} \\
\Rightarrow \omega=\sqrt{\frac{f K_{B} T}{I}}
\end{array}
$
for diatanic molecule, $f=2$
$
w=\sqrt{\frac{2 \times 1.3 \times 10^{-23} \times 300}{2.1 \times 10^{-39}}}=6.3 \times 10^{12} rad / sec
$
The angular root mean square velocity is $6.3 \times 10^{12} rad / sec$