Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The system of linear equations
$x + \lambda y - z = 0$
$\lambda x -y - z = 0$
$x + y - \lambda z = 0$
has a non-trivial solution for :

JEE MainJEE Main 2016Determinants

Solution:

$x + \lambda y -z = 0 $
$\lambda x - y - z = 0 $
$x +y - \lambda z = 0$
For non-trivial solution $\Rightarrow \Delta = 0$
$\Rightarrow \ \begin{vmatrix}1&\lambda&-1\\ \lambda&-1&-1\\ 1&1&-\lambda\end{vmatrix}=0$
$\lambda + 1 - \lambda \{ - \lambda^2 + 1 \} - (\lambda + 1 ) = 0$
$\lambda (\lambda^2 - 1 ) = 0 $
$\lambda = 0 , \pm 1 $
Exactly $3$ values of $\lambda$.