Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The system of homogeneous equations tx+(t+1)y+(t-1)z=0, (t+1)x+ty+(t+2)z=0 (t-1)x+(t+2)y+tz=0, has non-trival solutions for
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The system of homogeneous equations $ tx+(t+1)y+(t-1)z=0, $ $ (t+1)x+ty+(t+2)z=0 $ $ (t-1)x+(t+2)y+tz=0, $ has non-trival solutions for
J & K CET
J & K CET 2012
A
exactly three real values oft
B
exactly two real values oft
C
exactly one real value oft
D
infinite number of values oft
Solution:
Given system of equation is
$ tx+(t+1)y+(t-1)z=0 $
$ (t+1)x+ty+(t+z)z=0 $ and $ (t-1)x+(t+2)y+tz=0 $
For non-trivial solution,
$ \left| \begin{matrix} t & (t+1) & (t-1) \\ (t+1) & t & (t+2) \\ (t-1) & (t+2) & 1 \\ \end{matrix} \right|=0 $
On applying $ {{C}_{2}}\to {{C}_{2}}-{{C}_{1}} $
and $ {{C}_{3}}\to {{C}_{3}}-{{C}_{2}}, $
we get $ \Rightarrow $ $ \left| \begin{matrix} t & 1 & -2 \\ t+1 & -1 & 2 \\ t-1 & 3 & -2 \\ \end{matrix} \right|=0 $
Expanding along $ {{C}_{1}}, $
we get $ t(2-6)-(t+1)(-2+6)++(t-1)(2-2)=0 $
$ \Rightarrow $ $ -4t-4(t+1)+(t-1)\,(0)=0 $
$ \Rightarrow $ $ -8t-4=0 $
$ \Rightarrow $ $ t=-\frac{1}{2} $
Hence, exactly one real value of t exist.