Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum to infinity of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots $ is

NTA AbhyasNTA Abhyas 2022

Solution:

$S=1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots +\infty$ ... (1)
$\frac{S}{5}=0+\frac{1}{5}+\frac{4}{5^{2}}+\frac{7}{5^{3}}+\ldots +\infty$ ... (2)
On subtracting both the eq (1) and (2), we get,
$\frac{4}{5}S=1+\frac{3}{5}+\frac{3}{5^{2}}+\ldots +\infty$
$S=\frac{35}{16}$