Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum to infinity of the following series $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots .$. shall be-

Sequences and Series

Solution:

Series is $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \ldots \infty$
Here $T_n=\frac{1}{n(n+1)}=\left[\frac{1}{n}-\frac{1}{n+1}\right]$
$\therefore T _1=\frac{1}{1}-\frac{1}{2} $
$ \Rightarrow T _2=\frac{1}{2}-\frac{1}{3}$
$T_n=\frac{1}{n}-\frac{1}{n+1}$
$\therefore S_n=T_1+T_2 \ldots \ldots . .+T_n=1-\frac{1}{n+1}$
when $n \rightarrow \infty \frac{1}{n+1} \rightarrow 0$
$\therefore S_{\infty}=1-0=1$