Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of the sequence $ 1+\frac{1}{4.2!}+\frac{1}{16.4!}+\frac{1}{64.6!}+......\infty $ is

Rajasthan PETRajasthan PET 2007

Solution:

We know that,
$ {{e}^{x}}=1+x+\frac{{{x}^{2}}}{2!}+\frac{{{x}^{3}}}{3!}+\frac{{{x}^{4}}}{4!}+.... $
and $ {{e}^{-x}}=1-x+\frac{{{x}^{2}}}{2!}-\frac{{{x}^{3}}}{3!}+\frac{{{x}^{4}}}{4!}-.... $
$ \Rightarrow $ $ \frac{{{e}^{x}}+{{e}^{-x}}}{2}=1+\frac{{{x}^{2}}}{2!}+\frac{{{x}^{4}}}{4!}+\frac{{{x}^{6}}}{6!}+.... $
Put $ x=\frac{1}{2} $
$ \frac{{{e}^{1/2}}+{{e}^{-1/2}}}{2}=1+{{\left( \frac{1}{2} \right)}^{2}}.\frac{1}{2!}+{{\left( \frac{1}{2} \right)}^{4}}\frac{1}{4!}+.... $
$ \Rightarrow $ $ \frac{e+1}{2\sqrt{e}}=1{{\left( \frac{1}{2} \right)}^{2}}.\frac{1}{2!}+{{\left( \frac{1}{2} \right)}^{4}}\frac{1}{4!}+... $