Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of the least positive arguments of the distinct cube roots of the complex number $(1-i \sqrt{3})$ is

TS EAMCET 2018

Solution:

Let $z=1-i \sqrt{3}$
positive argument of $z$ is $2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}$
$\therefore z=\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$
Cube root of $z$ is
$2^{1 / 3}\left[\cos \left(\frac{2 k \pi+5 \pi / 3}{2}\right)+i \sin \left(\frac{2 k \pi+5 \pi / 3}{3}\right)\right]$
where $k=0,1,2$
$\therefore k =0 \arg \left(z^{1 / 3}\right)=\frac{5 \pi}{9}$
$k =1 \arg \left(z^{1 / 3}\right)=\frac{11 \pi}{9}$
$k =2 \arg \left(z^{1 / 3}\right)=\frac{17 \pi}{9}$
Sum of positive argument
$=\frac{5 \pi}{9}+\frac{11 \pi}{9}+\frac{17 \pi}{9}$
$=\frac{33 \pi}{9}=\frac{11 \pi}{3}$