Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of roots of the equation $s i n^{4}x-c o s^{2}xsinx+2s i n^{2}x+sinx=0$ for $0\leq x\leq 3\pi $ is equal to

NTA AbhyasNTA Abhyas 2020

Solution:

$\sin x\left(\sin ^{3} x-\cos ^{2} x+2 \sin x+1\right)=0$
$\sin x\left(\sin ^{3} x+2 \sin x+1-\cos ^{2} x\right)=0$
$\sin x\left(\sin ^{3} x+\sin ^{2} x+2 \sin x\right)=0$
$\sin ^{2} x\left(\sin ^{2} x+\sin x+2\right)=0$
$\Rightarrow \sin x=0$ as $\sin ^{2} x+\sin x+2 \neq 0$
$\Rightarrow x=n \pi, n \in I$
$x \in[0,3 \pi], x=0, \pi, 2 \pi, 3 \pi$
$\Rightarrow $ sum of roots $=6 \pi$