Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of n terms of the series $ \frac{4}{3}+\frac{10}{9}+\frac{28}{27}+... $ is:

Jharkhand CECEJharkhand CECE 2005

Solution:

The given series can be rewritten as
$ \left( 1+\frac{1}{3} \right)+\left( 1+\frac{1}{9} \right)+\left( 1+\frac{1}{27} \right)+...n $
$ =n+\frac{1}{3}\left( 1+\frac{1}{3}+\frac{1}{3^{2}}+...n\,\,\text{terms} \right) $
$ =n+\frac{1}{3}\frac{\left[ 1-{{\left( \frac{1}{3} \right)}^{n}} \right]}{1-\frac{1}{3}}$
$=n+\frac{\frac{1}{3}\left( 1-\frac{1}{{{3}^{n}}} \right)}{\frac{2}{3}} $
$ =\frac{2n+1-\frac{1}{3^{n}}}{2}=\frac{3^{n}(2n+1)-1}{2\cdot 3^{n}} $