Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of first three terms of a G.P. is (7/9) and their product is - (8/27) . Find the common ratio of the series
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The sum of first three terms of a $G.P.$ is $\frac{7}{9}$ and their product is $- \frac{8}{27} $ . Find the common ratio of the series
J & K CET
J & K CET 2014
Sequences and Series
A
$ r=-2/3 $ or $ -3/2 $
30%
B
$ r=-2/3 $ or $ 3/2 $
21%
C
$ r=2/3 $ or $ -3/2 $
37%
D
$ r=2/3 $ or $ 3/2 $
12%
Solution:
Let first three terms of a GP are a, ar, $ a{{r}^{2}}. $
Then, $ sum=\frac{7}{9} $ (given)
$ \Rightarrow $ $ a+ar+a{{r}^{2}}=\frac{7}{9} $
$ \Rightarrow $ $ a(1+r+{{r}^{2}})=\frac{7}{9} $ ..(i)
and Product
$=-\frac{8}{27} $
$ \Rightarrow $ $ a.ar.ar=-\frac{8}{27} $
$ \Rightarrow $ $ {{a}^{3}}{{r}^{3}}=-\frac{8}{27}={{\left( \frac{-2}{3} \right)}^{3}} $
On comparing the powers, we get $ ar=\frac{-2}{3} $ ..(ii)
On dividing Eq. (i) by (ii), we get $ \frac{1+r+{{r}^{2}}}{r}=\frac{\frac{7}{9}}{\frac{-2}{3}} $
$ \Rightarrow $ $ \frac{1+r+{{r}^{2}}}{r}=-\frac{7}{9}\times \frac{3}{2}=\frac{-7}{6} $
$ \Rightarrow $ $ 1+r+{{r}^{2}}=\frac{-7}{6}r $
$ \Rightarrow $ $ {{r}^{2}}+\left( 1+\frac{7}{6} \right)r+1=0 $
$ \Rightarrow $ $ {{r}^{2}}+\frac{13}{6}r+1=0 $
$ \Rightarrow $ $ \left( r+\frac{3}{2} \right)\left( r+\frac{2}{3} \right)=0 $
$ \Rightarrow $ $ r=\frac{-3}{2} $ or $ \frac{-2}{3} $